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ABSTRACT 

Underwater target classification is often a demanding task. Underwater acoustic target classification systems can 

identify the acoustic target pertaining to their characteristic acoustic signature captured by hydrophones. The performance 

of any classification system depends on the classification algorithm being used and the feature extraction method used to 

identify the acoustic signature, of which the Support Vector Machine (SVM) method features better generalization ability 

when dealing with high-dimensional data. SVM’s are nonparametric models that rely on Structural Risk Minimization 

(SRM) principle in which model complexity is chosen according to data complexity. This paper presents a study on SVM 

based underwater acoustic target classification. Classification of 4 classes of acoustic targets using the nonlinear multiclass 

SVM algorithm is discussed. The acoustic features are extracted using Mel Frequency Cepstral Coefficients (MFCC), 

which has been extensively used in target recognition from acoustic signals. After preprocessing the acoustic data, the 

MFCC coefficients are extracted frame-by-frame and the feature vector at each frame is clustered using the k-means 

algorithm to form the acoustic signature. The acoustic signatures are labelled and fed to the SVM algorithm for 

classification. Performance of the proposed classifier is evaluated using the cross-validation technique. The proposed SVM 

classifier shows good generalization ability with an error rate of only 9% when evaluated with 10-fold cross-validation. 
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INTRODUCTION 

Underwater target classification is a difficult and challenging task. Underwater target activity is reflected by 

acoustic events with each target having its own ‘acoustic signature’. In its very basic form, an underwater target 

classification system is an acoustic recognition system. But the heavy distortion imposed by underwater propagation 

effects together with the noise introduced by the sea makes underwater target classification a cumbersome task. Fast and 

accurate underwater target recognition in the interference filled ocean is often required for military applications. 

The classification problem concerns the construction of a procedure that will be applied to a variety of acoustic 

signals, in which each new signal is assigned to one of a set of pre-defined classes on the basis of observed features[1]. 

Automatic recognition, description and classification have become an important problem in a variety of scientific 

applications. Many classification algorithms exist which includes classical statistical methods such as Discriminant 

analysis, Mixture models, Naive Bayes classifiers, Decision tree and Rule based methods. Modern techniques include 

Artificial Neural Networks (ANN) and Support Vector Machines (SVM) based classification. 

SVM was suggested by Vapnik in early 1990’s. Currently, an outbreak of interest towards SVM’s has emerged 

due to paramount advantages it offers. SVM’s are nonparametric models, wherein parameters are not predefined and their 

number depends on the training data used. As opposed to Empirical Risk Minimization (ERM) followed by traditional 

methods, SVM relies on Structural Risk Minimization (SRM) in which parameters that define the capacity of the model are 

data driven in such a way as to match the model capacity to data complexity[2]. SVM’s minimize true or expected risk thus 

minimizing generalization error. Furthermore, SVM’s do not suffer from the curse of dimensionality. 
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The proposed underwater classification system is composed of the four modules.1. Signal processing – In this 

module, acoustic feature vectors which characterize the properties of individual acoustic files are extracted.2. Acoustic 

Modeling – This module performs a reduction of extracted feature vectors by modeling their distributions to form 

codewords.3. Acoustic Database - The codewords are updated and stored in a codebook which forms the acoustic 

database.4. Classifier – An SVM based classifier is employed to classify the acoustic signals. 

The advantage of using SVM based classification technique is that SVM’s are relatively easy to implement , very 

robust due to its sound theoretical background and do not suffer from the curse of dimensionality. Any dimensional 

problem is easily solvable with SVM keeping the model complexity relatively low when compared to other approaches. In 

SVM model capacity matches the training data complexity which resolves problems like over-fitting and under-fitting. The 

SVM creates a model with minimized VC dimension, which results in a low expected probability of error and thus good 

generalization performance. The code for the proposed classifier is developed in the MATLAB software package and 

performs classification satisfactorily. 

THEORY AND DEFINITIONS 

Statistical Learning Theory 

The main goal of statistical learning theory (SLT) suggested by Vapnik is to provide a framework for studying the 

problem of inference, making predictions, constructing models from a set of data in a statistical framework [3]. The 

traditional concept of ERM is to find a function f(x) that minimizes the average risk on the training set. Vapnik’s procedure 

is that for a given amount of data the hypothesis which minimizes the true risk must be chosen. Vapnik introduced a 

guaranteed true risk with the probabilistic confidence η, 0≤η<1. The upper bound of this risk 

𝑅 𝑔 ≤ 𝑅𝑒𝑚𝑝  𝑔 +  𝜑;  𝜑 =   
𝑕 𝑙𝑜𝑔  

2𝐿

𝑕
 +1 − 𝑙𝑜𝑔 

𝜂

4
 

𝐿
                                                                                                               (1) 

Where Remp(g) is the empirical risk and ф is a confidence interval. The confidence interval ф is proportional to VC 

dimension h, which is a measure of the capacity of a statistical classification algorithm and inversely proportional to 

number of training data L. As the ratio L/h gets smaller, the VC confidence becomes larger and the true risk diverges from 

the empirical risk. Thus for small amount of data ERM may not minimize the true risk, thus giving rise to generalization 

errors. Structural risk minimization minimizes the upper bound on true risk. Since the upper bound is independent of the 

underlying probability distribution p (x,y), this is valid for all possible p (x,y) and for any number of training data. The 

algorithm for SVM is an actual implementation of the SRM principle. 

SUPPORT VECTOR MACHINES 

SVM’s are powerful tools for data classification that has been highly successful in a variety of applications. 

SVM’s stemmed from the theory of Structural Risk Minimization and is a statistical classification method designed for 

binary classification. 

SVM relies on three key ideas[4]. The first idea is to map the data to a high dimensional space, which may 

convert complex classification problems into simpler problems utilizing linear classifiers in this space. The second idea is 

to use only the training patterns that are near the decision surface for classification. These training patterns are called 

Support Vectors. The third key idea is to find the hyperplane that separates the data with the largest margin. This 

hyperplane is called Optimal Separating Hyperplane (OSH). Such a maximal margin classifier will have good 

generalization characteristics. 
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The learning problem setting for SVM is as follows: there is some unknown and nonlinear dependency   

(mapping, function) y = f(x) between some high-dimensional input vector x and output y. There is no a-priori information 

about the probability distribution of the input and so a distribution free learning must be performed. The only information 

available is a training data set {χ = [x(i),y(i)]ϵⱤm×Ɽ, i=1,.....n} where n stands for the number of the training data pairs and 

is therefore equal to the size of the training data set χ. 

Linear SVM 

Consider the problem of separating the training vectors belonging to two linearly separable classes.  

(x1,y), (x2,y),....................., (xn,y) ; x ϵ Ɽ
n
, y ϵ {+1,-1}                                                                                              (2) 

A linear discrimination function/hyperplane is d(x) = w
T
.x +b,wherew ϵⱤ

n
 and (.) denotes the dot product. w and b 

are the variables of the optimization problem,with feasible set defined by all possible separation Hyperplane, which is 

represented as 

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 𝑖 = 1,……… , 𝑛                                                                                                                                           (3) 

Let H0 be the region of vectors which satisfy the equation d(x) = 0 and H1 and H-1 are two hyperplanes parallel to 

H0 and defined by d(x) = 1 and d(x) = -1 respectively. The distance separating the H1 and H-1hyperplane which is the 

margin is 
2

 𝑤 
 . 

 

Figure 1: Binary Linear Classification 

The problem of finding the optimal separating hyperplane is to maximize the margin 
2

 𝑤 
 or minimize

 𝑤 2

2
. This is 

a quadratic optimization problem with linear constraints defined by inequalities i.e: Find w and b such that is 
 𝑤 2

2
 

minimized for all (xi ,yi) and  

 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 𝑖 = 1,……… , 𝑛                                                                                                                          (4) 

The solution to the quadratic optimization problem involves constructing a dual problem where a Lagrange 

multiplier 𝛼𝑖  associated with every constraint in the primary problem. Such an optimization problem is solved by the 

saddle point of the Lagrange functional. 

𝐿𝑝 𝑤, 𝑏, 𝛼 =  
1

2
𝑤𝑇𝑤 −  𝛼𝑖

𝑛
𝑖=1  𝑦𝑖 𝑤

𝑇 + 𝑏 − 1                                                                                                  (5) 

where 𝛼𝑖 are Lagrange multipliers. The search for an optimal saddle point  𝑤0 , 𝑏0, 𝛼 involves minimizing 

Lagrangian 𝐿𝑝w.r.t. w and b and maximizing w.r.t. nonnegative 𝛼𝑖  [5]. Classical Lagrangian duality enables the primary 

solution in equation (5) to be transformed to its dual problem which is easier to solve. The dual problem is given by 
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𝑚𝑎𝑥𝐿𝑑 𝛼 =   𝛼𝑖
𝑛
𝑖=1 − 

1

2
 𝑦𝑖

𝑛
𝑖,𝑗=1 𝑦𝑗𝛼𝑖𝛼𝑗x𝑖

𝑇x𝑗                                                                                                       (6) 

s.t. 𝛼𝑖 ≥ 0, 𝑖 = 1,……… , 𝑛 and 𝛼𝑖𝑦𝑖
𝑛
𝑖=1  = 0 

This classic quadratic optimization problem has a unique solution. According to Kuhn-Tucker theorem of 

optimization, the optimal solution satisfies 

 𝛼𝑖 𝑦𝑖 𝑤. 𝑥𝑖 + 𝑏 − 1 = 0, i = 1,................,n                                                                                                          (7) 

The equation (7) will have non-zero Lagrange multipliers only when the points xi satisfy 

𝑦𝑖 𝑤. 𝑥𝑖 + 𝑏 = 1                                                                                                                                                     (8) 

These points are the support vectors which determine the Optimal Separating Hyperplane (OSH). 

Soft Margin SVM 

The learning procedure for linear SVM’s is valid only when the training data sets are overlapping. In practice, the 

data may overlap due to noisy measurements or outliers. If the outliers are also accounted, the solution may not generalize 

well and so they are left on the ‘wrong’ side of the decision boundary. A soft margin is allowed by introducing a slack 

positive variable 𝜉𝑖  for each training vector and all data inside this margin are neglected. Equation (2) can be modified for 

soft margin SVM as 

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖  ;  𝑖 = 1, ……… , 𝑛and 𝜉𝑖 > 0                                                                                               (9) 

The problem of finding the optimal separating Hyperplane now becomes 

min
1

2
 𝑤 2 +  𝐶  𝜉𝑖

𝑛
𝑖=1 s.t 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 for 𝑖 = 1,……… , 𝑛and 𝜉𝑖 > 0                                                 (10) 

whereC is a penalty parameter, trading off the margin size for the number of misclassified data points. The 

solution to this problem is also achieved by constructing a dual Lagrangian problem. The resulting dual problem is same as 

that of equation (6) except the positivity constraint on now 𝛼𝑖becomes 0≤𝛼𝑖≤C; i = 1,............,n 

Non-Linear SVM 

When a linear boundary is inappropriate, a nonlinear classification problem can be solved by mapping input 

vectors x𝑖𝜖ℜ
𝑚  into vectors 𝜙(x𝑖)𝜖ℜ

𝑠  of a high dimensional feature space S (where 𝜙 represents mapping:ℜ𝑚  ℜ𝑠) and 

to solve a linear classification problem in this feature space 

𝑋𝜖ℜ𝑚  𝜙 𝑥 =   𝜙1 𝑥 𝜙2 𝑥 , …… . , 𝜙𝑠 𝑥  
𝑇𝜖ℜ𝑠                                                                                             (11) 

The dual Lagrangian optimization problem now becomes  

max𝐿𝑑 𝛼 =   𝛼𝑖 − 
1

2

𝑛
𝑖=1  𝑦𝑖

𝑛
𝑖,𝑗 𝑦𝑗𝛼𝑖𝛼𝑗𝑘 𝑥𝑖 , 𝑥𝑗  , s.t 𝛼𝑖  ≥0 for i =1,...........,n and  𝛼𝑖

𝑛
𝑖=1 𝑦𝑖 = 0                           (12) 

where 𝑘 𝑥𝑖 , 𝑥𝑗  =  𝜙𝑖
𝑇𝜙𝑗  is the kernel function performing the nonlinear mapping into feature space. Kernel 

functions could be any symmetric function that satisfies the Mercer’s conditions[6]. Commonly used kernel functions are 

summarized in table 1. 

The nonlinear binary classification problem consists of assigning a label to each input vector x through 

 𝑑 𝑥 =  𝑠𝑔𝑛  𝛼𝑖𝑦𝑖
𝑛
𝑖=1 𝑘 𝑥, 𝑥𝑖 + 𝑏                                                                                                                     (13) 
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wheren is the number of support vectors. 

Table 1: Standard Kernel Functions 

Kernel Functions Type of Classifier 

K x, xi =   xTxi  Linear, dot product 

K x, xi =   xTxi + 1 d  Polynomial of degree d 

K x, xi = exp −  x − xi 
2 /2σ2  Gaussian RBF 

K x, xi = tanh  xTxi + b  Multilayer Perceptron 

K x, xi =
1

  x − xi 
2 + β

 Inverse multiquadratic function 

 

Multi-Class SVM 

SVM was originally proposed as a binary classification problem. There are several methods of extending the 

binary SVM classification problem to a multi-class one. The multi-class problem is typically solved by decomposing it to 

several binary classification problem in which standard SVM can be used. Two commonly used algorithms for multi-class 

classification are one-against-all (1-a-a) proposed by Vapnik and one-against-one (1-a-1) method proposed by Knerr. In the 

first approach, K classifiers are constructed to solve a K-class problem. The n
th

 classifier constructs a hyperplane between 

class n and the K-1 other classes. The second approach involves constructing (K(K-1)/2) hyperplanes separating each class 

from each other class. Compared with 1-a-a method, 1-a-1 method gives better training results[7]. However, the number of 

binary classifiers used by 1-a-1 algorithm increases with number of classes, resulting in lower training speed. 

FEATURE EXTRACTION 

The identification and selection of features play a crucial role in classification. A wide range of features extracted 

from time domain or transformation domain such as spectral, cepstral and bispectral methods have been used for 

implementing various types of acoustic classifiers with varying success rates. Popular cepstral methods for feature 

extraction that have been successfully used for acoustic classification are Linear Predictive Cepstral Coefficients (LPCC) 

and Mel Frequency Cepstral Coefficients (MFCC). In this work we have used MFCC’s for feature extraction, because it 

combines the advantages of cepstrum together with a frequency scale based on human auditory system[8]. 

MFCC is based on the human peripheral auditory system. The human perception of the frequency contents 

follows a logarithmic scale instead of a linear scale. MFCC coefficients are obtained by taking Discrete Cosine Transform 

(DCT) of the logarithm of the short-term energy spectrum obtained after mel-scale filtering which is expressed on a      

mel-frequency scale. 

The mel-scale filter bank consists of a series of triangular band pass filters with spacing and bandwidth 

determined by a constant mel-frequency interval. On the frequency axis, such a filter bank corresponds to a set of non-

uniformly spaced filters with more and narrow filters in the low frequency region and less and wide filters in the high 

frequency region. Such an arrangement of the filter bank is to simulate the subjective spectrum of humans which is better 

at discerning small changes in pitch at low frequencies that at high frequencies. 

RESULTS AND DISCUSSIONS 

SVM based classifier was used for underwater acoustic classification. The database consists of 114 real 

backscattered signals from four different types of targets. Two targets namely, humpback whale and sealion are of 

mammalian origin and the other two, ship and boat are of mechanical origin. 

The classification involves two phases namely training and testing phase. In the training phase the acoustic 
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features extracted from sounds of known origin are used to build a reference model. In the testing phase, acoustic features 

extracted from test signals are fed to an SVM based classification system for classification. The ratio of the acoustic files 

selected for training and testing are user decidable. But an intensive training phase will certainly improve the performance 

of the classifier. The performance of the classifier in the testing phase is commonly evaluated by the formula 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒  % =  
𝑁𝑜:𝑜𝑓  𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑  𝑑𝑎𝑡𝑎

𝑇𝑜𝑡𝑎𝑙  𝑛𝑜 :𝑜𝑓  𝑑𝑎𝑡𝑎
 × 100                                                                                                 (14) 

In this work popular cross-validation technique is used for measuring the performance of the classifier.               

Cross-validation is a technique for assessing how the results of a statistical analysis will generalize to an independent data 

set. In k-fold cross validation the data set is randomly partitioned into k-equal sized sub data sets. Of the k sub data sets, a 

single data set is retained as the validation data for testing the model, and the remaining k-1 subsets are used as training 

data. The cross-validation process is then repeated k-folds with each of sub data set used exactly once as validation data. 

The error rate at each of the k iterations are calculated and averaged to produce a single estimate. 5-fold, 10-fold and       

15-fold cross-validation is attempted to measure the performance of the proposed SVM based classifier. The results are 

indicated in figure (2) and figure (3). 

The classification system consists of a feature extractor based on MFCC. Before the feature extraction step, the 

digitized acoustic waveform is subjected to pre-emphasis to reduce noise effects and to boost the high frequency contents. 

Pre-emphasis is done using a first order high pass filter of the form 

𝑦 𝑛 =  𝑥 𝑛 −  𝛼𝑥 𝑛 − 1 , 0.9 ≤ 𝛼 ≤ 1                                                                                                               (15) 

In the filter implementation, α the pre-emphasis parameter is selected as 0.95. 

For MFCC computation, each input acoustic signal is split into several frames. The length of the frame is chosen 

by the expression 

𝑓𝑟𝑎𝑚𝑒 𝑙𝑒𝑛𝑔𝑡𝑕 = 2(𝑓𝑙𝑜𝑜𝑟 [𝑙𝑜𝑔2(0.03×𝑓𝑠)])                                                                                                                  (16) 

An overlapping is also applied to the frames. The hop size for overlapping is chosen as half of the frame size. On 

each frame a windowing technique is applied which will get rid of some of the information at the beginning and end of 

each frame. Overlapping of frames is advantageous which helps to reincorporate this information back into the extracted 

features. 

The next step in computing MFCC’s is windowing. Windowing is performed to avoid distortions in the 

underlying spectrum. A wide range of window functions may be used. Three window functions- Hamming, Hanning and 

Rectangular window functions are compared. Results shown in figure (2) and figure (3) indicate that Hamming window 

gives the best performance. The windowed signal is transformed to the frequency domain by taking n-point DFT. The 

choice of n depends on N, the total number of samples in a frame. For even number of samples, n is chosen as (N+2)/2 and 

for odd number of samples n is chosen as (N+1)/2. Next step towards the computation of MFCC is mel-frequency scaling 

followed by mel-scale filtering. For Hz to mel transformation popular O’Shangnessy’s formula as in equation (17) is used. 

𝑚 =
ln 1+

f

700
 ×1000

ln 1+
1000

7000
 

                                                                                                                                                  (17) 

The mel-scale filter bank employed consists of a series of 12 triangular band pass filters with constant bandwidth 

and spacing on a mel-frequency scale. However these filters are non-uniformly spaced on the frequency axis with more 

filters in the low frequency regions and less filters in the high frequency regions. The logarithm of the filter bank energies 
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is then taken. The log filterbank energies are then converted back to the time domain using Discrete Cosine Transform 

(DCT). The output of the DCT stage gives the MFCC’s. 12 coefficients are computed for each frame of an acoustic input. 

Thus for a single acoustic input the feature vector size would be no: of frames × 12. 

The feature vectors so obtained are clustered using the k-means clustering algorithm (with k=1) to form the 

codewords. Each codeword will be a row vector with 12 columns. The codebook generated by arranging the set of 

codewords will thus be a vector of dimension no: of acoustic inputs×12. Each row of the codebook is a codeword which 

corresponds to the acoustic feature vector of an acoustic input. These are then fed to a nonlinear multiclass SVM classifier 

which employs one-against-all (1-a-a) approach for classification. Two commonly used kernel functions, namely Gaussian 

RBF and multilayer perceptron (MLP) have been used for classification. The results are indicated in figure (2) and 

figure(3). MLP showed lowest error rate when evaluated with cross-validation technique. 

 

Figure 2: Error Rate with MLP Kernel 

 

Figure 3: Error Rate with RBF Kernel 

The performance of the classifier in the oceanic environment was simulated by calculating the error rate when the 

signals are corrupted in the ocean wave noise. The corrupted signals were obtained by forming a composite signal 

combining the target signal and the wave noise. The error rate according to equation (14) with the signals corrupted in 

wave noise was calculated to be 6.14%. MLP kernel which showed the best performance when evaluated with            

cross-validation was employed. 

CONCLUSIONS 

The proposed classifier showed best results with MLP kernel. SVM classifier offers many advantages over other 

classification methods and has been used successfully in many fields of machine learning. In this paper an underwater 

target classifier based on SVM is attempted. The results showed the superiority of MLP kernel over other standard kernel 
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functions. The proposed classifier showed good generalization ability with an error rate of only 9% when evaluated with 

10-fold cross-validation.  
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